Bilinear Space-time Estimates for Linearised Kp-type Equations on the Three-dimensional Torus with Applications

نویسنده

  • AXEL GRÜNROCK
چکیده

A bilinear estimate in terms of Bourgain spaces associated with a linearised Kadomtsev-Petviashvili-type equation on the three-dimensional torus is shown. As a consequence, time localized linear and bilinear space time estimates for this equation are obtained. Applications to the local and global well-posedness of dispersion generalised KP-II equations are discussed. Especially it is proved that the periodic boundary value problem for the original KP-II equation is locally well-posed for data in the anisotropic Sobolev spaces H xH ε y(T ), if s ≥ 1 2 and ε > 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Space-Time Estimates and Applications to Local Existence Theory for Nonlinear Wave Equations

We prove a quadrilinear integral estimate in space-time for solutions of the homogeneous wave equation on R. This estimate is a generalization of a previously known bilinear L estimate, and it arises naturally in the study of the local regularity properties of a hyperbolic model equation connected with wave maps from Minkowski space R into a sphere. The scale invariant data space for this equat...

متن کامل

Linear superposition principle applying to Hirota bilinear equations

A linear superposition principle of exponential traveling waves is analyzed for Hirota bilinear equations, with an aim to construct a specific sub-class of N-soliton solutions formed by linear combinations of exponential traveling waves. Applications are made for the 3 + 1 dimensional KP, Jimbo–Miwa and BKP equations, thereby presenting their particular N-wave solutions. An opposite question is...

متن کامل

A bilinear Bäcklund transformation of a (3+1) -dimensional generalized KP equation

A bilinear Bäcklund transformation is presented for a (3 + 1)-dimensional generalized KP equation, which consists of six bilinear equations and involves nine arbitrary parameters. Two classes of exponential and rational traveling wave solutions with arbitrary wave numbers are computed, based on the proposed bilinear Bäcklund transformation. Published by Elsevier Ltd

متن کامل

On Kp-ii Type Equations on Cylinders

In this article we study the generalized dispersion version of the Kadomtsev-Petviashvili II equation, on T × R and T × R. We start by proving bilinear Strichartz type estimates, dependent only on the dimension of the domain but not on the dispersion. Their analogues in terms of Bourgain spaces are then used as the main tool for the proof of bilinear estimates of the nonlinear terms of the equa...

متن کامل

Comment on the 3+1 dimensional Kadomtsev–Petviashvili equations

We comment on traveling wave solutions and rational solutions to the 3+1 dimensional Kadomtsev–Petviashvili (KP) equations: (ut + 6uux + uxxx)x ± 3uyy ± 3uzz = 0. We also show that both of the 3+1 dimensional KP equations do not possess the three-soliton solution. This suggests that none of the 3+1 dimensional KP equations should be integrable, and partially explains why they do not pass the Pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009